Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Ping Yang, Ping Zhong* and Qian Shi

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.050$
$w R$ factor $=0.120$
Data-to-parameter ratio $=11.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-[(2-hydroxybenzylidene)amino]-1H-pyrazole-3-carbonitrile

The title compound, $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$, is a tricyclic amide with an overall U -shaped molecule.

Received 31 December 2005
Accepted 20 January 2006

Comment

The title compound, (I), is an important starting material for the synthesis of 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-(trifluoromethylsulfanyl)pyrazole, 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfenyl)pyrazole and 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfonyl)pyrazole, all of which are good insecticides (Hatton et al., 1993).

(I)

The structure of (I) is shown in Fig. 1. The molecule contains three planar groups, forming an overall U-shape, viz. a 2,6-dichloro-4-(trifluoromethyl)phenyl, a pyrazole and a 2 hydroxyphenyl ring. The dihedral angles between the pyrazole and the C1-C6 and C12-C17 aromatic rings are 17.9 (3) and $64.3(1)^{\circ}$, respectively. In the crystal structure, the molecules stack along the c axis, as shown in Fig. 2.

Experimental

Following the method of Hatton et al. (1993), reaction of 2,6-dichloro-4-trifluoromethylamine with a suspension of nitrosylsulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]pyrazole, which was then reacted with 2 -hydroxybenzaldehyde and hydrochloric acid in anhydrous ethanol to give the title compound, (I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate/petroleum ether $(1 / 2 \mathrm{v} / v)$ solution (m.p. $445-447 \mathrm{~K})$. IR ($\mathrm{KBr}, v \mathrm{~cm}^{-1}$): 3355,3145 , $3064,2359,2241,1606,1568,1522,1313,887,860 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $11.15(s, 1 \mathrm{H}), 9.25(s, 1 \mathrm{H}), 8.19(s, 2 \mathrm{H}), 7.62(d, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ $(m, 1 \mathrm{H}), 7.40(s, 1 \mathrm{H}), 7.01(m, 1 \mathrm{H}), 6.88(d, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 168.4$ (1C), 162.1 (1C), 151.6 (1C), 137.3 (1C), 136.6 (1C), 135.2 (1C), 134.3 (1C), 128.5 (2C), 126.3 (2C), 123.3 ($q, J=270 \mathrm{~Hz}$, 1C), 121.9 (2C), 117.0 (1C), 114.1 (1C), 100.7 (1C), 99.3 (1C).

The structure of (I), showing the atomic numbering scheme and displacement ellipsolids at the 50% probability level.

Figure 2

Packing diagram viewed down the c axis.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O} \\
& M_{r}=425.19 \\
& \text { Monoclinic, } P 2_{1} \\
& a=7.4482(9) \AA \\
& b=9.3760(11) \AA \\
& c=13.1365(16) \AA \\
& \beta=98.820(2)^{\circ} \\
& V=906.53(19) \AA^{3} \\
& Z=2
\end{aligned}
$$

$D_{x}=1.558 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3113 reflections
$\theta=1.6-25.2^{\circ}$
$\mu=0.41 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.28 \times 0.22 \times 0.18 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.899, T_{\text {max }}=0.930$
4838 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.120$
$S=1.04$
2928 reflections
258 parameters
H atoms treated by a mixture of independent and constrained refinement

2928 independent reflections
2687 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-8 \rightarrow 7$
$k=-8 \rightarrow 11$
$l=-15 \rightarrow 14$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0637 P)^{2}\right. \\
& +0.4065 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 3100 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.15 \text { (9) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 13$	$1.728(4)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.352(4)$
$\mathrm{F} 1-\mathrm{C} 18$	$1.260(8)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.372(5)$
$\mathrm{F} 2-\mathrm{C} 18$	$1.294(7)$	$\mathrm{N} 2-\mathrm{C} 12$	$1.417(5)$
$\mathrm{F} 3-\mathrm{C} 18$	$1.290(6)$	$\mathrm{N} 3-\mathrm{C} 10$	$1.332(5)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.351(6)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.372(6)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.286(5)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.392(6)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.385(5)$		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$118.1(4)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$104.3(4)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 8$	$112.7(3)$	$\mathrm{N} 3-\mathrm{C} 10-\mathrm{C} 9$	$113.5(3)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 12$	$119.8(3)$	$\mathrm{N} 3-\mathrm{C} 10-\mathrm{C} 11$	$118.9(4)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 12$	$127.3(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$127.6(4)$
$\mathrm{C} 10-\mathrm{N} 3-\mathrm{N} 2$	$103.1(3)$	$\mathrm{N} 4-\mathrm{C} 11-\mathrm{C} 10$	$178.4(5)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 2$	$106.3(4)$	$\mathrm{F} 1-\mathrm{C} 18-\mathrm{F} 3$	$105.7(7)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 1$	$135.1(4)$	$\mathrm{F} 1-\mathrm{C} 18-\mathrm{F} 2$	$106.5(6)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$118.5(4)$	$\mathrm{F} 3-\mathrm{C} 18-\mathrm{F} 2$	$104.0(5)$

The H atom on atom O 1 was located in a difference Fourier synthesis and refined with the restraint $\mathrm{O}-\mathrm{H}=0.82$ (1) \AA. Other H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.96 \AA$), and allowed to ride on their respective parent C atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The highly anisotropic displacements of the F atoms indicate possible disorder, which was not resolved. The absolute configuration of the title compound is unknown and there is no firm chemical evidence for its assignment. Refinement of the Flack (1983) parameter tends to support the current assignment.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).

This work was supported by the National Natural Science Foundation of China (No. 20572079) and the Natural Science Foundation of Zhejiang Province (No. Y205540).

References

Bruker (2002). SMART, SAINT, SADABS, SHELXTL and XP. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W., Pearson C. J., Roberts, D. A. (1993). US Patent 5232940.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

